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Abstract. We have calculated the electron self-mass in quantum electrodynamics which is 
valid to all orders in e’ but only to first order in an expansion in powers of fr. Our value is 
given by 

am =+I+-), e’ 2h 
2roc rmcro 

where ro is the cutoff radius. 

The self-mass 

SmQ=--(ln-+i) e’ 3m h 
41rhc 21r romc 4 

of the electron in quantum electrodynamics evaluated in the second-order pertur- 
bation theory is logarithmically divergent in the limit of the cutoff radius ro+O and 
proportional to its mass, in contrast to the classical value 

( 2 )  
e’ 

Sm, = - 
2r0c2 

which is linearly divergent in the limit ro + 0 and independent of m. Ordinarily one 
would expect the classical result to follow from the corresponding quantum mechani- 
cal expression in the limit h + 0, but there is a case which seems to violate this principle 
(see, for instance, Schweber 1961). This puzzle has recently been resolved by Vilenkin 
and Femin (1975) who point out that whereas S ~ Q  given by equation (1) is the first 
term in a perturbation expansion (in powers of e 2 / h c )  of the electron self-mass, Sm, 
given by equation ( 2 )  is exact to all orders in e2 .  Further, since the expansion 
parameter diverges in the limit h+O, one should not expect to obtain a cor- 
respondence between these two. On the other hand, there should exist such a 
correspondence between the exact self-mass in quantum and classical electrody- 
namics. These authors show that Dyson’s expression for the exact quantum elec- 
trodynamic self-mass equals the classical value in the limit h + 0. It has been noted by 
these authors that this result is similar to the well known theorem of Thirring (1950) 
which states that the exact Compton amplitude equals the classical (Thomson) ampli- 
tude in the limit of zero photon momentum. 

The aim of the present investigation is to calculate the semiclassical limit of the 
electron self-mass which is the first-order term in an expansion of the exact Dyson 
self-mass in powers of h. This is similar in spirit to the work of Gell-Mann and 
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Goldberger (1956) and Low (1956) on the calculation of Compton amplitude to first 
order in photon momentum. We have succeeded in our endeavour and our result is 
given by: 

which is quadratically divergent in the limit ro + 0. It may be noted that this result is 
quantum mechanical in the same sense as any WKB result and is exact to all orders in 
e’, in contrast to the logarithmically divergent self-mass given by equation (1) which is 
valid to order e2/hc. 

We start with the exact self-masst 

Sm = iG(p)X(p)u(p) 

where U@) is the free Dirac spinor, eo is the unrenormalised charge and G(p), 
T,(p, p ’ )  and Dry(q)  are the exact electron propagator, vertex function and photon 
propagator respectively. These can be written in Lorentz covariant form as follows: 

K being the anomalous magnetic moment of the electron. To obtain expansion of the 
self-mass given by equation (4) in powers of h we shall, as in Vilenkin and Femin 
(1975), introduce the propagation vector K = q / h  of the photon and use a con- 
vergence factor$ (1 +$r;K2)-’ in the photon propagator whence 

where we have put 

t We follow the notation and metric etc of Akhiezer and Berestetskii (1965) without setting h = c = 1. 
$ Our convergence factor is different from that used in Vilenkin and Femin (1975) and has been so chosen 
as to ensure convergence of the integral for 6m to order h and at the same time yield the result of Vilenkin 
and Femin in the classical limit. 
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We now expand c(p - Kh), B,,,(Kh) and r,(p - Kh,  p) in powers of A in the follow- 
ing manner: 

6 ( p - K h ) = G ' O ) ( p , K ) + h 6 ' ' ) ( p , K ) + . . .  (7a 1 
d,,(Kh) = S,,(B'O'(K)+ h2d(2)(K)+. . .) 
r , (p-Kh,p)=r?)+hrZ"+.  . . . (7c) 

(7b) 

It has been shown in Vilenkin and Femin (1975) that: 

y . p + i m c  
2p .  K GcO)(p, K )  = 2 2  

(8b) d'O)(K) = - 

pu = z;'Y,u. (8c) 

2 3  

iK2 

Substituting (7a), (7b) ,  (7c) and (8c) in equation (6) and collecting terms of order h we 
find: 

amsc = 7 ~ 7 ( p ) y , ( 6 ' ~ ) ( p ,  K)y,z;' + (?(')(p, K)r:'(K))u(p)d'O'(K). ieih d4K 
477 c 1 (1+tr;K ) 

(9) 

We need to know K )  and I'z)(K) before we can evaluate amsc given by 
equation (9). Taylor's expansion of 6(p - Kh)  with the explicit representation 
( 5 a )  we obtain 

y . p + i m c  K' 
2p .  K ( C ;  + y . p c i ) )  -fi (10) 2p.  K (G- 2p.  K 

&"'(p, K )  = 

where the primes on C1 and C2 denote differentiation with respect to their arguments, 
i.e. p . Since, on account of the Dirac equation for E ,  we have from ( sa )  and (10) 2 

equation (9) further simplifies to 

iet hz2 d4K y .  K y . p K 2  
8msc = - 4 r 3 c  1 (l+$r;K ) ")[ ( q + F K y  

(13) -27. p(C', +imcC;) 2;' +-r Y - P  (1) ( K ) ] U @ ) ~ ( ~ ) ( K ) .  
p . K  

In the above equation we need to know fi(p)r'')(K)u(p) and (C;  +imcCL) to obtain 
the final expression for amsc. From ( k ) ,  we have 

(14) 
i K  

zI(p)I':'(K)u(p)= lim -E(p))o;X,u(p)= 0. 
K + C  2m 
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To calculate (C; + imcC; ) we make use of the relation 

obtained from (a/ap,)(G(p)G-’(p)) = 0 and the Ward identity 

a 
-G-’(p)= -T,(p, p ) .  
aP, 

Multiplying both sides of equation (15) on the left-hand side by G(p)s-’(p) and on the 
right-hand side by s- ’ (p)u(p)  and using the representation (5a), we get 

C; +imcCh = O .  (16) 

Substituting equation (16) in equation (13) and making use of the identity z1 = ZZ, we 
obtain after simplification 

d4K 
Smsc = - ie2 I 1 2 2 2(--+ 47r3c3 K2(1+aroK ) m 2(p. K)’ 

where e = z3”e0 is the renormalised charge. Since the above expression is Lorentz- 
invariant, we evaluate it in the rest frame of the electron, i.e. p = 0, and obtain 

which is quadratically divergent in the limit io+ 0. The total self-mass up to first order 
in h is thus 

e2  2h 
2roc rmcro 

Sm = amc+ amsc = m( 1 +-), 
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